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The forced oscillations due to a point forcing effect in an infinite or contained, 
inviscid, incompressible, rotating, stratified fluid are investigated taking into 
account the density variation in the inertia terms in the linearized equations of 
motion. The solutions are obtained in closed form using generalized Fourier 
transforms. Solutions are presented for a medium bounded by tl finite cylinder 
when the oscillatory forcing effect is acting at  a point on the axis of the cylinder. 
In  both the unbounded and bounded case, there exist characteristic cones emanat- 
ing from the point of application of the force on which either the pressure or its 
derivatives are discontinuous. The perfect resonance existing a t  certain fre- 
quencies in an unbounded or bounded homogeneous fluid is avoided in the case 
of a confined stratified fluid. 

1. Introduction 
The motion due to oscillations of a small disk placed in the interior of a 

cylindrical container has been studied by Qortler (1957). He predicted the 
existence of discontinuous surfaces similar to Mach cones in compressible 
aerodynamics when the forcing frequency o is less than the natural rotational 
frequency 2a2. These results were experimentally verified by Oser (1958). Further, 
it may be seen that the cones of discontinuity continue by reflexion off the 
lateral wall of the cylinder. In  the above investigations only the theory for 
an unbounded domain was considered. ReynoIds (1962a, b) has analysed forced 
oscillations in rotating fluids using an initial-value formulation and has shown 
that for the case of rapid forcing the motion set up after a long time will be 
everywhere in phase with the exciting motion, whereas, for slow forcing, 
travelling waves will be set up in the fluid, and, in addition to the motion in 
phase with the excitation, an out-of-phase component will also exist. 

Forced oscillations of a contained inviscid rotating fluid in a fhite cylinder 
have been considered by Baines (1967). The motion was induced by forcing 
simultaneous identical and axisymmetric time-harmonic deformations of the 
plane ends of the cylinder. The solution was obtained by using Laplace transform 
techniques and consists of an infinite set of inertial modes in addition to motion 
which oscillates with the forcing frequency. Further, it was concluded that the 
inviscid form of steady forced motion should only be approached in a viscous 
medium. These theoretical predictions are in good agreement with the experi- 
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mental findings of McEwan (1971). Devanathan & Ramachandra Rao (1973) 
have extended the above problem to include the effects of stratification; some 
new features appear when the density variation is included in the inertia terms. 

The aim of the present investigation is to study the oscillations forced in a 
contained rotating stratified fluid by an oscillatory point force acting at a 
point on the axis of rotation. It is well known that small obstacles or bodies 
can be replaced formally by point forces, which are easier to  deal with. The slow 
motion of a sphere in a rotating viscous fluid has been studied by Childress 
(i964) by replacing the sphere by a point force equal to the Stokes drag on the 
sphere. Janowitz (1968), in his study of wakes in stratified fluids, replaced the 
boundary conditions on the body by linearized momentum integral equations, 
which in turn were replaced by a product of two Dirac delta functions. The 
governing equation for the pressure is derived in 5 2. In 8 3 the solutions for a 
point force in an unbounded fluid are presented in closed form. These solutions 
are different from those obtained by Sarma & Naidu (1972) in the hyperbolic 
case as they did not make use ofa radiation condition, which is necessary to pick 
the correct solution. In  $4, the solutions for a point force acting at  a point on 
the axis of a finite cylinder containing the rotating stratified fluid are given in 
terms of infinite series. By analysing the series by a method similar to that given 
by Baines (i967),  it is shown that the derivatives of the pressure become dis- 
continuous (the series diverge) along certain cones and that these cones continue 
by reflexion at  the lateral surface of the cylinder. 

2. Formulation 
We consider a fluid rotating about the Cartesian z axis with an angular velo- 

city 2Q, the rotation axis being assumed to be antiparallel to gravity. The 
equations of motion of an inviscid incompressible fluid in a rotating frame of 
reference are 

(1)  

where p’ is the density, q is the velocity vector, p‘ is the pressure, 2 is a unit 
vector in the z direction, g is the acceleration due to gravity, r is the position 
vector and X‘ is the applied external force. 

p’[aq/at+q. Vq+2Q2 x q + Q %  x!2 xr-X’] = -vp’ -p’gg ,  

The condition that the fluid be incompressible gives 

appt  + (q. V) p’ = 0 (2) 

and the equation of continuity is 

O . q  = 0. (3) 

The stratification of the undisturbed fluid is taken as po(z) = pie-/‘ for all finite 
z, and for z-+ co we assume that po approaches slowly, smoothly and monotonic- 
ally some positive value. For this stratification, the Brunt-T’aisala frequency 
N = [( - g/pJ (dpo/dz)]* remains constant throughout the fluid. Linearizing 
(1)-(3) under the assumption that u, v, w, p and p, the perturbation velocity 
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components, pressure and density, are small and taking into consideration the 
density variation in the inertial and applied external forces, we get 

po[au/at - 2aW + a2x - xi] = - apiax, (4) 
p,[av/at + 2au + 5 2 2 ~  - Y‘] = - splay, 

po[aw/at - 2’1 = - appz  - pg, 

aP dP0 au av aw 
- + + - - 0 ,  - + - + - = o ,  

ax ay ax at dz 

where X’ = (X’ ,  Y’,Z’). Eliminating u, w and w from (4)-(6) using (7) and (S), 
the equation governing the pressure is obtained as 

252a 

where 
p = Peiot, (X‘,  Y’,Z’)  = ( X ,  Y,Z)efwt. (10) 

The term p(aP/az) on the left-hand side of (9) will be absent andp, on the right- 
hand side of (9) will be a constant if the density variation is not included in the 
inertia terms, i.e. when the Boussinesq approximation, in which the density 
variation is considered only in buoyancy forces, is made. We call a fluid Bous- 
sinesq or non-Boussjnesq according to whether the Boussinesq approximation 
holds or not. We observe that the equations governing the flow of a Boussinesq 
rotating fluid and a homogeneous rotating fluid are very similar and thus their 
solutions are also very similar. But when density variation is considered in the 
inertial forces, that is, for a non-Boussinesq fluid, some new features are observed 
(Sarma & Krishna 1972; Devanathan & Ramachandra Rao 1973). 

Now let us consider the applied external force be a point force acting a t  a 
point (0, 0, z,,) on the z axis and given by 

X = eiot(L’, M’, N’)  S(x) 6(y) 6(z - zo), (11) 

where L‘, M’ and I?’ are constant and 6(x) is a Dirac delta function. Substituting 
(1 1) in (9), we get 

252 a 

Equations (9) and (12) are elliptic, hyperbolic or parabolic in the spatial co- 
ordinates according as (4Q2 - w2)/(N2 - w2)  is positive, negative or zero (infinite). 
In  other words the equations are hyperbolic if 2Q < w < N or N < w < 252, 
elliptic if 252, N > w or 2Q, N < w and parabolic if 252 = w or N = w.  
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3. The solutions for a point force in an unbounded fluid 

vanishes at inki ty .  Substituting 
The problem here is to solve (12 )  subject to the condition that the pressure 

in (12) and writing it in cylindrical polar co-ordinates ( r ,  8, z) ,  we obtain the 
equation governing Po as 

The fact that the solution for Po will be axisymmetric has been used in writing 
down (14 ) .  By taking a generalized Fourier transform with respect to z ,  (14) 
becomes 

d2P0 - + - ldPo - -p2y2Po = PO(Z0) -eeiazo6(r) (elliptic case), 
dr2 r dr 2nr 

2P - eiazo d(r) (hyperbolic case), (16) 
d2P0 IdPo 
-+---+Ay 0 -  2nr dr2 r dr 

The solution of (15 )  which remains finite at infinity is 

Po = (pO(z0 ) /4~)  e-iazoKo(i"~r), (18) 

where Ko(,uuyr) is a modified Bessel function of the second kind, and the solution 
of (16) satisfying the Sommerfeld radiation condition is 

.Po = &ipo(zo) e(azo@)(Ayr), (19) 

where Hi2)(hyr) is a Hankel function of the second kind. Inverting the Fourier 
transform and making use of the results given in Erdblyi et al. (1954, p. 56, 
formulae 43, 42 ) ,  the solution for Po in the elliptic case is 

and in the hyperbolic case is 
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where z3, = z - zo. If the point force is acting a t  the origin (zo = 0), then these 
solutions (20)-(22) coincide with the solutions obtained by Ramachandra Rao 
(1973) for a mass source except for a constant multiplying factor. Thus the solu- 
tions for a point force can be obtained from the solutions for a mass source by 
the process of differentiation given in (13). This leads to the concept of multipoles 
for rotating stratified fluids; the corresponding concept of multipoles for homo- 
geneous rotating fluids is given by Ramachandra Rao (1972). The solutions for 
the pressure for a Boussinesq rotating fluid are given by 

Po = pA/S7~(2? +p2r2)4 (elliptic case) 

and 
(23) 

(hyperbolic case). (24) 
-ph/8n(z? - h2r2)*, 
ipA/8n(h2r2 - z:)*, 1 z, I < hr 

From the expressions for Po for Boussinesq and non-Boussinesq fluids it is clear 
that the exponential damping of the non-wavy disturbance in the elliptic case 
and the presence of waves in the hyperbolic case are essentially the new features 
for a non-Boussinesq fluid of the type we have considered. However, the solutions 
for a Boussinesq rotating fluid and a homogeneous rotating fluid are similar and 
the solutions for Po in the latter case may be obtained from (23) and (24) by 
putting p2 = (w2 - 4Q2)/w2 and h2 = (4Q2 - w2)/w2.  

Using the process of differentiation given in (13), the solution for the pressure 
when the point force is acting in the x direction (L’ = M = 0,“ 9 0) in the 
elliptic case is 

and in the hyperbolic case is 

x e x p ( - ~ ~ [ z 1 + i ( h 2 r 2 - 2 : ) ~ ] ) ,  Iz,) < hr. (27) 

From the expressions for p in (25)-(27), we observe that the flow pattern is 
axisymmetric, whereas for a force acting in either the x or the y direction the 
flow pattern will not remain axisymmetric, as may easily be seen from the 
process of differentiation given in (13). Further, in the hyperbolic case the 
pressure becomes discontinuous, actually becoming infinite, on the cone = h2r2 
which emanates from the point of application of the force. 

The solutions for the pressure p enable us to obtain the velocity components 
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v,, vg and vz: from the axisymmetric equations of motion in cylindrical polar co- 
ordinates: 

where 

Hence the velocities are effectively linear functions of the first derivatives of the 
pressure. The expressions for the velocities in (28)-(30) coincide with those 
obtained by Baines (1967) for a homogeneous rotating fluid in the limit p-. 0. 
Further, it may be observed that when w+ 2R the pressures given in (25)-(27) 
vanish everywhere except on the cone of discontinuity, which becomes a plane 
perpendicular to the axis of rotation passing through zo7 across which p is dis- 
continuous. When w + N ,  the pressure becomes infinite and the system resonates. 

4. The solutions for a point force in fluid bounded by a finite circular 
cylinder 

Consider the fluid to be contained in a finite cylinder of length 21 and radius a 
and let the point force be acting at the point (0, 0, zo) in the x direction 

(L' = M' = 0, " * 0). 

The governing equation for the pressure from (12) is 

. (31) dz 

The boundary conditions are 

v,=O on r = a 7  v , = O  on z =  21. (32% b )  

Equations (32) in terms of P are 

aP/ar = 0 on r = a,  aP/az = 0 on z = +1. (33a, b)  

By applying to (31) a finite Hankel transform defined by 

p(En,z )  = /:rP(r,Z)Jo(gnr)dr, (341 

where the En are the positive roots taken in order of J i ([a)  = 0, and making use 
of boundary condition (33a) ,  we get 
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The problem is to find the solution of (35) subject to the boundary conditions 

d&lx = 0 on z = +1. (36) 

Expressing the function p,(z) dd(z - zo)/dz as a Fourier series in the range 
- 1  < x - z o  < I, we get 

where 

a, = T s i n E z , )  1 +pcos(?z,),] 

b m = p s i n ~ z o ) - ~ c o s ~ z o ) .  
(38) 

The solution of (35) satisfying the boundary conditions (38) is given in the elliptic 
case bv " "' (' ) [ - + e-*Pz(Antn cosh k,z + B,, sinh k,x) 

m = l  
p =  2 

4n1 

where 

( - l )m+l  2mnp28,, 

( - l ) m + l  2mnp28,, 

(kn cosh knl sinh gal + ipsinh knl cosh +Jll], (43) 

{knsinhk,lcosh~~1+~Jlcosh~,1sinh~Jll). (44) 

A m ,  = ctlsinh2knl 

Bmn = 1 sinh 2kn 1 

Using the inversion formula for finite Hankel transforms given by Sneddon 
(1972, p. 450) and (lo), the solution for the pressure p is 

In  a similar way the solution for the pressure in the hyperbolic case is obtained as 
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where 

B' 
= ( - )" 2m7rrh2 

( - kk sin k; I cosh 4/31 + $p cos kk I sinh 4P.J). (50) 1 sin 2kL 1 mn 

The solution for the pressure p in the case of a Boussinesq rotating fluid is 
given in the elliptic case by 

sinh (5.) + sin (z - z O ) ) ] ) ,  (51) 
(m7r/l) ( - 1 p + 1  cos (mnz,/l) 

and in the hyperbolic case by 

The pressure in the limiting case of a homogeneous rotating fluid is obtained by 
putting p2 = (w2 - 4Q2)/w2 and h2 = (4Q2 - w2)/w2 in (51) and (52) .  

When the point force is acting at  the origin, we have zo = 0 and the solutions 
(45) and (46) for the pressure for a non-Boussinesq rotating fluid clearly indicate 
that it will not become zero anywhere in the domain. However, from the solutions 
for the pressure in a Boussinesq or homogeneous rotating fluid, we observe that 
it becomes zero at  the origin as they involve sine and hyperbolic sine factors 
only. Similar behaviour, namely vanishing pressure towards the origin, was 
observed by Baines (1967) in a homogeneous rotating fluid even though the 
mechanism forcing the oscillations was different. The flow in the hyperbolic case 
(45) consists of two infinite sets of modes oscillatory with respect to x ,  one type 
of mode oscillating with the frequency k; and the other with the forcing fre- 
quency mrr/l. The amplitude of the mode with frequency kk becomes infinite 
(resonance occurs) when sin 2k61 = 0, that is, when kkl  = mrr or i ( 2 m  i- 1) n. 

In the limit w+- ZQ, the pressure becomes zero for non-Boussinesq, Boussinesq 
and homogeneous rotating fluids. The pressure becomes infinite as w + N  in 
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non-Boussinesq and homogeneous rotating fluids, but in the case of a Boussinesq 
rotating fluid we get 

Thus the exact resonance existing in flows of non-Boussinesq and homogeneous 
rotating fluids as o -+ N is avoided in a Boussinesq rotating fluid. 

Solution (46) for the pressure is rewritten in the form 

J ( E  w m  

p = C X exp (iwt - fr,8z) {a,, cos [kk(z - z,)] + b,, sin [kk(z - x , ) ] )  (54) 
m = l  ncl Ji(Ena) 

+ modes oscillatory in z with frequencies mnll, where a,, and b,, are some 
known constants. For large En and n we have 

[na = (n-n,+~)n-33/8nn+O(n-2), (55) 

where no is an integer. Using the asymptotic form for Jo(tnr) we may write 

](1+0(3), (56) x [ siniikl + c0sk;l 
h, cos k;(z - z,) h, sin [k,(x - zO)] 

where h,, hz and h3 are constants. 
An inspection of the series reveals that the third derivatives o f p  are discon- 

tinuous (for more detailed analysis of similar cases see Wood 1965; Baines 1967). 
These discontinuities will be realized in the second derivatives of the velocity 
across the cones hr (2-2,) = constant, which emanate from the point of 
application of the force, and continue by reflexion at the lateral side of the 
cylinder (Oser 1958). These cones may be recognized as the well-known charac- 
teristic surfaces, whose presence is explained by the hyperbolic nature of the 
governing equations. For Boussinesq or homogeneous rotating fluids it is ob- 
served that the terms in the infinite series are O(n-8) and the discontinuities 
will be realized in the second derivatives of p ,  i.e. in the velocity gradients 
instead of the second derivatives of the velocity. 

The author is extremely grateful to Prof. Sir James Lighthill for his valuable 
suggestions for improvements to an earlier version of the paper and for his kind 
encouragement. 
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